
Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand

Khoury College of Computer Sciences
© 2022, released under CC BY-SA

CS 4530 Software Engineering
Lesson 8.3: Continuous Delivery

http://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Describe how continuous delivery helps to catch errors sooner in a 
product’s lifecycle

• Describe the distinction between a DevOps and “traditional” 
developer/operator mentality

• Describe strategies for performing quality-assurance on software as 
and after it is delivered



Cost to Fix a Defect Over Time
Rough estimate

Concept

Design

Development

Local Testing

Commit/Code Review

Integration

Production

Late-Stage Production

De
fe

ct
 C

os
t Today: How do we catch defects just at 

the inflection point of this curve?



Deploying New Code
The best that we can hope for?

“If stuff blows up it affects a very 
small percentage of people”

Instagram cofounder and CTO Mike Krieger

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram

https://www.fastcompany.com/3047642/do-the-simple-thing-first-the-engineering-behind-instagram


Continuous Delivery
“Faster is safer”: Key values of continuous delivery

• Release frequently, in small batches

• Maintain key performance indicators to evaluate the impact of updates

• Phase roll-outs

• Evaluate business impact of new features



Staging Environments
Enabling Continuous Delivery

• As software gets more complex with more dependencies, it's impossible to 
simulate the whole thing when testing

• Idea: Deploy to a complete production-like environment, but don't have 
everyone use it

• Examples:

• “Eat your own dogfood”

• Beta/Alpha testers

• Lower risk if a problem occurs in staging than in production



Test-Stage-Production
Continuous Delivery in Action

Testing 
Environment

Staging Environment Production Environment

Beta/Dogfooding User Requests
Developer 

Environments

Revisions are “promoted” towards production

Q/A takes place in each stage (including production!)



A/B Deployments with Canaries
Mitigating risk in continuous delivery

Monitor both:
But minimize impact of problems in new version



Operations Responsibility 
DevOps in a slide

• Once we deploy, someone has to monitor software, make sure it’s running 
OK, no bugs, etc

• Assume 3 environments:

• Test, Staging, Production

• Whose job is it?
Developers Operators

Waterfall

Agile

DevOps

Test ProductionStaging

ProductionStagingTest

StagingTest ProductionProduction



Release Pipelines
How quickly is my change deployed?

• Even if you are deploying every day, you still have some latency

• A new feature I develop today won't be released today

• But, a new feature I develop today can begin the release pipeline today 
(minimizes risk)

• Release Engineer: gatekeeper who decides when something is ready to go 
out, oversees the actual deployment process



Deployment Example: Facebook.com
Pre-2016

~1 week of development

3x Daily

Stabilize

release branch
Weekly

3 days

All changes from week
that are ready for release

Release Branch
4 days

All changes that survived stabilizing

Developers working in their own branch

Your change doesn’t go out 
unless you’re there that day at 

that time to support it!

~1 week of development

master branch

When feature is ready, push as 1 change to master branch

production
“When in doubt back out”



Deployment Example: Facebook.com
Chuck Rossi, Director Software Infrastructure & Release Engineering @ Facebook

“Our main goal was to make sure that the new
system made people’s experience better — or
at the very least, didn’t make it worse. After
almost exactly a year of planning and
development, over the course of three days in
April 2017 we enabled 100 percent of our
production web servers to run code
deployed directly from master.”

“Rapid release at massive scale” https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Deployment Example: Facebook.com
Post-2016: Truly continuous releases from master branch

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/


Monitoring
The last step in continuous deployment: track metrics

• Hardware

• Voltages, temperatures, fan speeds, component health

• OS

• Memory usage, swap usage, disk space, CPU load

• Middleware

• Memory, thread/db connection pools, connections, response time

• Applications

• Business transactions, conversion rate, status of 3rd party components



Monitoring Services Aggregate System Status



Monitoring Dashboards Help Gather Insights



Monitoring Services Take Automated Actions



Monitoring Services Take Automated Actions
Automatically detecting irregular behavior at Netflix

https://www.youtube.com/watch?v=qyzymLlj9ag

https://www.youtube.com/watch?v=qyzymLlj9ag

